kaggle-imc25 n-st Place Solution
像站在大门前倏忽了一瞬间
https://www.kaggle.com/competitions/image-matching-challenge-2025/discussion/583058
自己的知识储备和工程能力远远不够,导致无法驾驭现有的工具和方法。
作者承诺会公开代码,等待学习…
值得注意的点
Rotation correction
MASt3R的特征提取, 不需要像ALIKED等特征提取器一样,对图像进行旋转增强/过滤
keypoints being concentrated in only one part of the image
关键点集中于图像某一部分
https://www.kaggle.com/competitions/image-matching-challenge-2025/discussion/583401 和另外一篇discussion中都有提到这个问题。
3rd solution提出的tiled images策略很有意思。
4rd RDD
RDD: Robust Feature Detector and Descriptor using Deformable Transformer
有时间读一下这个
https://xtcpete.github.io/rdd/
https://www.kaggle.com/competitions/image-matching-challenge-2025/discussion/582959
pair-match
https://arxiv.org/abs/2504.20040
In addition to the semi-dense matches, keypoints extracted by other keypoint detectors are also fed to the MASt3R matcher (Inspired by MP-SfM https://arxiv.org/abs/2504.20040). These additional keypoints might regionally overlap with points subsampled by MASt3R, but this approach improved the score compared to using only MASt3R matches.
MASt3R subsample + ALIKED detector + SuperPoint detector